ADVANCED OPTIMIZATION TECHNIQUES (MACHINE DESIGN)

Duration: 3 hours
Max Marks: 60
Answer the following questions.

1. Solve the following LP problem using dual simplex method:

15 M
Minimize $f=20 x_{1}+16 x_{2}$
Subject to $2 x_{1}+x_{2} \geq 17$
$x_{1}+x_{2} \geq 12$
$x_{1} \geq 2.5$
$x_{2} \geq 6$

(OR)

2. a) Why a dynamic programming problem is called a multi stage decision problem?
b) Illustrate the significance of sensitivity analysis with example.
3. Perform two iterations of steepest descent method to minimize the following function from the stated starting point.

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}\right)^{2}+\left(1-x_{1}\right)^{2} \quad \text { from the starting point } \tag{-1.21.0}
\end{equation*}
$$

4. Using Kuhn-Tucker conditions, find the value(s) of β for which the point $x_{1}^{*}=1, x_{2}^{*}=2$ will be optimal to the problem:

15 M
Maximize $f\left(x_{1}, x_{2}\right)=2 x_{1}+\beta x_{2}$
Subject to

$$
\begin{aligned}
& g_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-5 \leq 0 \\
& g_{2}\left(x_{1}, x_{2}\right)=x_{1}-x_{2}-2 \leq 0
\end{aligned}
$$

5. a) Discuss the differences and similarities between conventional and evolutionary algorithms.

8 M
b) How random population is generated in Genetic Programming?

(OR)

6. a) Describe the terms: (i) Cross over
(ii) mutation (iii) reproduction
b) Construct the objective function to be used in GAs for a minimization problem with mixed equality and inequality constraints.
7. Solve the following LP problem using the branch-and -bound method:

15 M

$$
\begin{gathered}
\text { Maximize } f=3 x_{1}+4 x_{2} \\
\text { Subject to } \\
7 x_{1}+11 x_{2} \leq 88, \quad 3 x_{1}-x_{2} \leq 12, x_{1} \geq 0, x_{2} \geq 0 \\
x_{i}=\text { integer, } i=1,2
\end{gathered}
$$

(OR)
8. Formulate model for optimization of path synthesis of a four-bar mechanism.

